Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Data compilations of bankfull downstream hydraulic geometry for alluvial rivers, lidar derived high-resolution spatial series of bankfull width for 67 sites, and hydrograph metrics for sites with USGS hydrographs. This compilation is composed of three datasets: (1) a compilation of alluvial river geometry at bankfull for a variety of hydraulic attributes; (2) x, y, and z coordinates of channel bank lines for a selection of sites and their associated river widths derived from high-resolution lidar topography; and (3) statistics describing the hydrographs for a subset of the larger compilation. These data are divided into two primary sets, the larger compilation and a smaller set of sites where the bankfull width was derived from lidar topography. For the high-resolution dataset, the data are available as the coordinates of the bank lines, spatial series of distance downstream and bankfull width, and the spatial series filtered for quality.more » « less
-
Abstract Partial speech input is often understood to trigger rapid and automatic activation of successively higher-level representations of words, from sound to meaning. Here we show evidence from magnetoencephalography that this type of incremental processing is limited when words are heard in isolation as compared to continuous speech. This suggests a less unified and automatic word recognition process than is often assumed. We present evidence from isolated words that neural effects of phoneme probability, quantified by phoneme surprisal, are significantly stronger than (statistically null) effects of phoneme-by-phoneme lexical uncertainty, quantified by cohort entropy. In contrast, we find robust effects of both cohort entropy and phoneme surprisal during perception of connected speech, with a significant interaction between the contexts. This dissociation rules out models of word recognition in which phoneme surprisal and cohort entropy are common indicators of a uniform process, even though these closely related information-theoretic measures both arise from the probability distribution of wordforms consistent with the input. We propose that phoneme surprisal effects reflect automatic access of a lower level of representation of the auditory input (e.g., wordforms) while the occurrence of cohort entropy effects is task sensitive, driven by a competition process or a higher-level representation that is engaged late (or not at all) during the processing of single words.more » « less
An official website of the United States government
